Evidence for tonic activation of NK-1 receptors during the second phase of the formalin test in the Rat.

نویسندگان

  • J L Henry
  • K Yashpal
  • G M Pitcher
  • J Chabot
  • T J Coderre
چکیده

Behavioral, electrophysiological, and autoradiographic experiments were done to study the second nociceptive phase in the formalin test. In initial experiments, this second phase was attenuated by 1-10 mg of the NK-1 receptor antagonist CP-99,994, given subcutaneously 10, 30, or 60 min before formalin (n = 8-10) and by 20 microgram given intrathecally 20 min after formalin (n = 13); the inactive isomer CP-100,263 was ineffective. In electrophysiological experiments on single dorsal horn neurons in vivo, the excitatory responses to subcutaneous formalin injection (50 microliter, 2.5%) were attenuated by subsequent intravenously administration of the NK-1 receptor antagonist CP-96,345 (0.5 mg/kg; n = 8), given 35-40 min after formalin, but not by the inactive enantiomer CP-96,344 (0.5 mg/kg; n = 9). Finally, autoradiographic binding of exogenous [(125)I]BH-substance P in the lumbar cord was reduced at 5 and 25 min after formalin (50 microliter, 1 or 5%), with an intermediate level of reduction at 12 min. These data are interpreted as evidence that the second phase of nociceptive scores in the formalin test is attributable at least partially to tonic activation of NK-1 receptors at the spinal level, whether because of a temporally limited release of substance P, for example only during the first phase, but a slow removal or breakdown of substance P, or, more likely, because of tonic release from primary afferents throughout the second phase. Irrespective of the mechanism, it can be concluded that at least some of the persistent nociceptive effects associated with peripheral inflammation, or at least those provoked by subcutaneous injection of formalin, are mediated via continuous activation of NK-1 receptors at the level of the spinal dorsal horn; this may relate directly to mechanisms underlying prolonged nociceptive pains in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pilocarpine on the formalin-induced orofacial pain in rat

In this study, the effects of subcutaneous (SC) injection of pilocarpine (a cholinomimetic agent) and atropine (a muscarinic receptors antagonist) were investigated on a tonic model of orofacial pain in rats. The contribution of the endogenous analgesic opioid system was assessed using naloxone (an opioid receptors antagonist). Tonic orofacial pain was induced by SC injection of a diluted forma...

متن کامل

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Effects of Sophora alopecuroides L., Zingiber officinale Rosc. and Melissa officinalis L. in Formalin and Straub Tail Tests

Background: S. alopecuroides, Z. officinale and M. officinalis are used traditionally in the treatment of pain. Objective: To evaluate the plants effects in the rat formalin test and their activity on the opioid receptors. Methods: Each rat was placed individually in a cage for 30 min to get acclimated. Then 0.05 mL of 10% formalin was injected subcutaneously into the dorsal surface of the r...

متن کامل

Termination of Nociceptive Bahaviour at the End of Phase 2 of Formalin Test is Attributable to Endogenous Inhibitory Mechanisms, but not by Opioid Receptors Activation

Introduction: Formalin injection induces nociceptive bahaviour in phase I and II, with a quiescent phase between them. While active inhibitory mechanisms are proposed to be responsible for initiation of interphase, the exact mechanisms which lead to termination of nociceptive response in phase II are not clear yet. Phase II is a consequence of peripheral and central sensitization processes, whi...

متن کامل

A study on the site of antinociceptive effect of Trigonella foenum graecum (TFG) leaves extract in phasic and tonic models of pain

  There are several reports on the therapeutic effects of TFG in Iranian traditional medical literature such as antinociceptive, antipyretic, and anti-inflammatory, antidiabetic and antidiuretic effects. The anti-inflammatory and anti-pyretic effects of TFG have been confirmed in experimental models. In the present study, the antinociceptive effect of TFG extract in formalin and tail flick test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 15  شماره 

صفحات  -

تاریخ انتشار 1999